
WHITE PAPER

Hyper-V
Automation for
Windows Patch
Diffing
By: Kevin McGrath

2Hyper-V Automation for Windows Patch Diffing

WHITE PAPER

Table of Contents

 03	 What	is	patch	diffing,	and	why	would	we	do	it?

 04	 Why	Hyper-V?	

 04	 Finding	a	patch	to	investigate
05		 Microsoft	Update	Catalog	

06 Aside on Patch Formats

 07 OK,	we	know	what	we	want	to	investigate.	Now	

what?	
10 More Complete Automation

3Hyper-V Automation for Windows Patch Diffing

WHITE PAPER

I’ve	often	found	that	the	best	way	to	understand	any	given	tool	is	to	
break	it.	Or	at	least	see	how	other	people	broke	it	and	try	to	understand	
that.	In	that	spirit,	this	blog	will	walk	through	some	automation	developed	
to facilitate patch diffing	--	the	investigation	of	changes	made	by	
updates	to	a	given	library.	This	blog	is	a	discussion	of	how	to	obtain	the	
before and after	files	for	a	given	patch,	rather	than	the	actual	process	of	
patch	diffing.	This	is	intentional,	as	the	process	of	obtaining	the	files	to	
investigate	is	often	tedious,	error-prone,	and	a	frequent	stumbling	block.

Some	assumptions	are	made:

 � You	are	attempting	this	on	an	x86-64	based	Windows	machine	that	
meets	the	requirements	for	Hyper-V	(see	below).

 � You	have	at	least	one	set	of	tools	for	binary	diffing	--	r2diaphora
enables	the	free	diaphora on r2	if	you	don’t	have	a	license	for	IDA-Pro.

 � You	can	run	PowerShell	scripts	as	admin	on	your	local	machine.	
An	admin	PowerShell	session	is	required	due	to	the	way	Hyper-V	
modules	work	in	PowerShell.

 � You	have	some	specific	CVE	you	want	to	investigate	and	know	the	
Knowledge	Base	(KB)	ID	of	the	patch.

After	making	use	of	this	technique,	you	will	have	(at	least)	2	files	that	you	
can	compare	--	what	I	call	a	pre-patch	version	and	a	post-patch	version.	
One	of	the	important	considerations	to	keep	in	mind,	if	you	are	looking	
for	a	patch	against	a	specific	CVE,	is	that	there	will	often	be	multiple	
DLLs	impacted	by	the	change...and	not	always	the	DLLs	you	might	think.

What	is	patch	diffing,	and	why	would	we	do	it?	

Patch	diffing	is	a	technique	in	which	you	investigate	a	given	CVE	by	
looking	at	the	binary	in	question	both	before	and	after	the	patch,	looking	
for	where	the	binary	changed.	It’s	an	incredibly	powerful	approach	to	
writing	a	proof-of-concept,	but	it’s	also	used	by	malicious	actors	to	
weaponize	a	given	vulnerability	(if	possible).	This	is	possible	primarily	
due	to	the	fact	that	not	everyone	can	or	will	patch,	and	once	a	patch	is	
public,	the	cat	is	out	of	the	bag,	as	it	were.

This	is	a	static	analysis	technique.	You	will	not	be	comparing	the	
running	behavior	of	the	code,	but	rather	the	raw	opcodes	which	make	
up	the	binary.	As	mentioned	above,	there	are	many	tools	to	help	with	
this	activity,	and	it’s	highly	recommended	that	you	leverage	those	--	
sometimes	the	change	is	so	small,	it’s	easy	to	overlook.

This	blog	won’t	cover	the	actual	diffing	process	as	there	are	numerous	
tutorials	available;	instead,	the	focus	is	on	an	automated	way	to	identify	
possible	candidates	for	diffing,	as	well	as	making	such	files	easily	
accessible	to	the	tools	you	want	to	use.

https://github.com/FernandoDoming/r2diaphora
https://github.com/joxeankoret/diaphora
https://github.com/radareorg/radare2

4Hyper-V Automation for Windows Patch Diffing

WHITE PAPER

Why	Hyper-V?

Hyper-V	is	a	type	1	hypervisor	which	runs	bare	metal	on	the	host	system	
(in	essence,	this	means	that	the	“host	OS”	is	actually	running	within	the	
hypervisor	as	well,	albeit	in	a	special	fashion),	and	is	freely	available	from	
Microsoft,	so	long	as	you	are	running	Windows	Professional,	Enterprise,	or	
Education1,	2.

Finding	a	patch	to	investigate

It’s	the	second	Tuesday	of	the	month.	You	know	what	that	means!	
Microsoft’s	Patch	Tuesday	is	here!	OK,	maybe	that	isn’t	super	exciting	to	
people	that	aren’t	me;	regardless,	patches	are	available,	and	Microsoft	
publishes	knowledge	base	(KB)	articles	about	each	and	every	patch	set	
it	deploys.	Assuming	you	are	reading	this,	you’re	interested	in	looking	at	
what	those	patches	actually	do.	So	how	can	we	figure	that	out?

As	an	aside,	it	should	be	noted	
that	if	you	still	want	to	run	a	type	
2	hypervisor,	such	as	VMware	
Workstation	or	VirtualBox,	there	
are	specific	minimum	versions	
required:

 � VirtualBox	6+

 � VMware	Workstation	15.5.5+	In	
the	case	of	VirtualBox,	it	will	
simply	use	the	Hyper-V	engine3.	
In	the	case	of	VMware,	the	
change	requires	a	move	from	
a	priviledged	virtual	machine	
monitor	to	a	user-level	monitor	
which	leverages	the	Hyper-V	
API	to	run	virtual	machines4.

Given	that	Hyper-V	is	freely	
available,	and	most	importantly	
has	a	scriptable	API	from	
PowerShell,	it	seemed	an	ideal	
combination	of	tools	that	we	
could	make	something	of.	
It’s	quite	likely	there	is	qemu
equivalent	on	Linux,	but	I	have	
not	investigated	that	possibility,	
since	I’m	running	Windows	and	I’m	
currently	investigating	Windows	
vulnerabilities.

https://medium.com/teamresellerclub/type-1-and-type-2-hypervisors-what-makes-them-different-6a1755d6ae2c

5Hyper-V Automation for Windows Patch Diffing

WHITE PAPER

We	have	a	few	ways.	We	can	disable	automatic	patch	installation	and	
query	the	update	servers	to	obtain	the	KB	number	of	a	patch	we’re	
interested	in	(maybe	it	touches	on	the	kernel,	or	Hyper-V,	or	even	MS	
Teams	if	that’s	your	bag).	We	can	also	let	the	update	install	on	our	host	
machine,	and	then	look	at	our	update	history,	as	seen	here:

The	circled	value	is	the	knowledge	base	entry	which	details	this	patch.	So	
what	can	we	use	this	value	for?

Microsoft Update Catalog

This	is	where	the	Microsoft	Update	Catalog	comes	in.	You	can	search	
by	KB	number,	and	it	will	find	you	the	MSU	(Microsoft	update	package)	
for	the	different	variants	of	Windows	(ARM64,	ADM64).	This	site	doesn’t	
appear	to	have	a	usable	scripting	API,	but	you	can	just	download	the	files	
manually	and	stick	them	somewhere	safe.

OK,	now	we	have	the	patch	file	that	contains	the	fix	we	are	interested	
in.	Unfortunately,	we	can’t	just	use	that,	as	an	MSU	file	is	an	archival	
format,	typically	containing	of	multiple	CAB	files,	each	of	which	contains	
some	number	of	additional	files.	These	additional	files	include	manifests,	

https://www.catalog.update.microsoft.com/Home.aspx

6Hyper-V Automation for Windows Patch Diffing

WHITE PAPER

security	catalogs,	and	several	other	files	which	we	will	mostly	ignore.	We	
are	primarily	interested	in	the	new	DLLs.

Except...there	are	many	“DLL”	files	that	aren’t	actually,	you	know,	DLL	
files.	They	are	too	small,	they	are	missing	even	a	basic	PE	header,	and	
IDA	doesn’t	parse	them	as	anything	but	raw	binaries.	Well,	huh...there’s	
definitely	something	going	on	here,	what	with	these	files	always	being	
in a . . .\f\ , . . .\r ,	or	. . .\n	folder,	and	often	different	sizes	but	all	the	same	
names.	So,	what’s	going	on	here?

Aside on Patch Formats

As	seen	in	[5],	there	are	2	different	forms	of	patches.	Sometimes,	
MS	will	distribute	full	replacement	DLL/EXE	files	for	the	component	
in	question.	Other	times,	it	will	make	use	of	deltas,	which	are	binary	
patches	to	the	component.	In	an	ideal	world,	after	patch	extraction,	
you	would	find	the	full	DLL	you	need	in	C:\Patches\MSU\x64\	(or	
whatever	path	you	choose	to	use	when	extracting).	Unfortunately,	
this	won’t	always	be	the	case.	Quite	often,	you	will	end	up	with	
a	set	of	folders	underneath	a	named	component	(of	the	form	
. . .\<platform>_<component>_<checksum>\).

If	you	are	wondering	what	the	named-like-a-DLL-but-too-small-and-not-
a-DLL	files	that	you	find	in	folders . . .\f\ and . . .\r\ ,	these	are	the	delta	
files.	There	are	three	types:

 � forward

 � reverse

 � null	

Forward	deltas	move	from	a	base	binary	(as	shipped	in	a	feature	release	
of	Windows)	to	the	current	version.	Reverse	deltas	are	exactly	what	they	
say	on	the	tin:	they	take	a	current	binary	and	revert	it	to	the	base	version.	
Null	deltas	are	essentially	new	files.	While	it	is	perfectly	possible	to	write	a	
Windows	C++	program	that	makes	use	of	the	MSDELTA	library,	that	would	
be	tedious.	And	also,	unnecessary.	Fortunately	for	us,	a	GitHub	user	by	
the	name	of	wumb0	has	written	a	python	script	which	leverages	the	
MSDELTA	library	to	apply	a	given	pair	of	patches	(forward	and	reverse)	to	
a	file,	or	to	apply	a	null	patch	to	obtain	a	new	file.

If	you	are	interested	in	obtaining	the	DLLs	you’re	interested	in	without	
spinning	up	a	new	VM,	for	many	components	you	can	simply	use	the	
delta_patch.py	script,	included	here	for	completeness	(original	source).	
You	can	obtain	the	deltas	of	applied	patches	in	the	C:\Windows\
WinSxS	directory,	applying	paired	updates	in	a	reverse-then-forward	
method	to	get	to	a	specific	patch	level.	Look	at	[5]	for	the	full	details	on	
how	you	might	want	to	do	this.

https://docs.microsoft.com/en-us/previous-versions/bb417345(v=msdn.10)#msdelta
file:///dmcgrath/hyper-v-patch-diffing/-/blob/main/delta_patch.py
https://wumb0.in/extracting-and-diffing-ms-patches-in-2020.html

7Hyper-V Automation for Windows Patch Diffing

WHITE PAPER

OK,	we	know	what	we	want	to	investigate.	Now	
what?

The	steps	to	investigate	a	given	patch	file	are	nearly	always	the	same.	
We’ll	walk	through	the	process	of	using	a	full	MSU	“by	hand,”	then	put	it	
all	together	into	an	automation	script.	

The	steps	themselves	are:

1.	 Build	a	Windows	VM	of	the	version	of	interest	--	so	if	you	want	to	investigate	something	
that	came	out	on	Patch	Tuesday	of	this	month,	snag	the	ISO	from	MSDN	that	was	
updated	no	later	than	last	month.

2.	 Copy	the	.msu	package	of	the	given	KB	from	the	Microsoft	Update	Catalog.	If	you	know	
the	KB	of	the	update	you	are	interested	in,	you	can	search	the	catalog	for	it.

3.	 At	this	point,	you	need	to	extract	the	files	from	the	patch	file.	You	can	do	this	manually	
with	C:\Windows\system32\expand.exe -F:* “C:\Patches\patch.msu” ,	recursively	
as	needed	on	any	CAB	files.	That	gets	pretty	old,	and	pretty	cluttered.	What	I	would	
suggest	is	making	use	of	the	PatchExtract.ps1	script.	This	is	an	interesting	tool,	if	only	for	
its	provenance.	It	was	originally	released	by	Greg	Linares	(@Laughing_Mantis),	possibly	in	a	
Twitter	thread.	Now,	the	only	public	sources	I	can	find	for	it	are	other	peoples’	gits,	and	an	
article	on	working	with	patch	files.5

This	will	create	a	series	of	folders	for	you	within	C:\Patches\MSU\ .

4.	 I’d	suggest	copying	the	entire	contents	of	C:\Patches\MSU\x64	to	your	host.	This	will	
give	you	the	ability	to	manipulate	the	contents	of	that	directory	much	more	easily.	There	
are	a	few	ways	you	can	do	this:

 – You	can	copy/paste	the	whole	directory	from	the	VM,	so	long	as	you’re	connected	via	
an	“Enhanced	Session”

 – You	can	mount	a	shared	folder	within	the	VM,	and	copy	the	files	there

 – You	can	user	the	PowerShell	Hyper-V	API	to	move	the	files:	

This	requires	that	you	have	a	session	$s ,	which	can	be	created	with:

I’m	sure	there	are	more,	as	well,	but	this	blog	is	about	automation,	after	all.

file:////dmcgrath/hyper-v-patch-diffing/-/blob/main/PatchExtract.ps1

8Hyper-V Automation for Windows Patch Diffing

WHITE PAPER

5.	 In	some	fashion,	you	will	need	to	generate	a	list	of	the	DLL	files	which	this	update	
touches.	To	do	it	from	within	PowerShell	on	the	host,	you	can	run	

These	are	my	paths.	Yours	may	differ.

6.	 Once	you	have	the	list	of	DLLs	the	update	modifies,	you	can	extract	them	from	the	VM.	
Again,	there	are	a	few	ways	to	do	this:	

 – Copy	each and every one by hand.	In	some	updates,	there	are	thousands.	But	you	
could	do	it,	I	suppose.

 – On	the	VM,	use	powershell	to	copy	the	full	list	to	a	new	folder,	then	use	one	of	the	
methods	above	to	copy	that	folder	to	the	host.

 – Or	you	can	use	more	automation!

It	is	worth	pointing	out,	this	assumes	you	have	a	session	$s	to	work	with.	This	
snippet	also	displays	a	progress	meter,	based	on	the	total	number	of	DLLs	we	are	
attempting	to	copy,	while	silently	ignoring	missing	files	and	any	other	errors.	By	setting	
$progresspreference	to	‘silentlyContinue’	we	eliminate	the	copy-file	progress	dialog,	
while	still	retaining	our	progress	meter.	$patchPath	is	the	base	path	on	your	host	where	
you	want	the	DLLs	while	$CVE	is	exactly	what	it	says.	Now	that	you	have	the	pre-patch	
DLLs	copied	to	your	host,	it’s	time	to	apply	the	patch!	

 – You	can	double	click	the	.msu	file

 – You	can	use	the	following	command:

7.	 In	either	case,	the	patch	will	be	installed.	Now	reboot	the	system.

8.	 Repeat	the	exercise	above	where	you	copy	the	DLLs,	this	time	copying	in	to	
$patchPath\$CVE\post_patch\ .

9.	 As	a	final	step,	checksum	each	file	in	both	$patchPath\$CVE\pre_patch\ and
$patchPath\$CVE\post_patch ,	noting	which	DLLs	actually	changed.	I	put	them	in	the	
$patchPath\$CVE\dlls_of_interest\ directory,	suffixed	by	whether	they	are	pre-	or	
post-patch.

10.	At	this	point,	you	are	welcome	to	use	whatever	tool	you	prefer	to	actually	diff	the	files!

9Hyper-V Automation for Windows Patch Diffing

WHITE PAPER

If	this	is	something	you	do	regularly,	that’s	a	lot	of	time,	especially	since	
it	requires	so	much	manual	involvement.	Turns	out,	we	can	remove	that	
human	component,	which	serves	two	purposes:

1.	 It	removes	the	tedium	of	the	process

2.	 It	removes	the	common	mistake	points	due	to	tedium.

There	are	a	few	places	where	manual	intervention	is	still	required,	but	
they	are	minimized.	This	will	be	discussed	in	more	detail	below.	

More Complete Automation

So	how	do	we	automate	as	much	as	possible?	Turns	out	the	majority	of	
what	we	are	doing	can	be	invoked	via	the	PowerShell	CLI.	Also,	there’s	
a	PowerShell	API	which	can	be	used	to	invoke	commands	on	a	remote	
session	(the	VM	is	the	remote	in	this	case).

Some	more	assumptions	to	bring	up	at	this	point:

 � You	have	a	base	VM	from	which	to	clone.	This	means	you	have	a	VM	
that	has	had	Windows	installed,	but	little	or	nothing	else	done	to	it.

 � You	want	to	create	a	new	VM	for	each	CVE	you	are	investigating.	
While	not	required,	it	is	strongly	encouraged.

OK,	that’s	not	too	long	a	list.	Let’s	do	this!	Do	you	have	a	cup	of	coffee?	Maybe	a	sandwich	or	
a	piece	of	cake?	Because	you’ll	need	at	least	that	during	this	process.

1.	 Installing	a	VM	to	get	to	the	right	version	takes	a	decent	amount	of	time,	especially	if	you	
have	to	download	the	ISO.	Let’s	say	20	minutes,	give	or	take.

2.	 Copying	the	MSU	file	takes	under	a	minute,	no	big	deal.

3.	 Extracting	the	MSU	file...this	can	take	a	while.	Large	MSUs	can	easily	take	20-30	minutes.	
Even	smaller	updates	take	a	solid	5	minutes

4.	 Copying	the	patch	files,	give	it	a	few	minutes.

5.	 Copying	the	potentially	modified	DLLs	can	take	anywhere	from	a	few	minutes	to	a	few	
hours,	depending	on	the	approach	you	want.	For	a	moderately	sized	update,	even	using	
the	automation	above,	it	takes	5-10	minutes.

6.	 Apply	the	update.	20-30	minutes,	quite	often.

7.	 Repeat	step	5	for	post-patch	DLLs,	another	5-10	minutes	(at	least)

8.	 Run	the	checksums,	compare,	and	copy	relavent	DLLs	to	a	new	folder	to	make	
investigation	easier.	2-3	minutes.

9.	 Total	runtime:	On	the	order	of	75-90	minutes.	Assuming	you’re	paying	attention	and	don’t	
get	distracted.

10Hyper-V Automation for Windows Patch Diffing

WHITE PAPER

OK,	with	that	out	of	the	way,	how	can	we	clone	a	VM	from	the	
command	line?	Below	is	a	snippet	of	code	which	does	just	that.	
Comments	are	included	in	the	code	to	explain	the	origin	of	
variables,	and	what	exactly	this	code	does.

So,	at	this	point,	we	have	a	new	VM	of	the	current	virtualized	
hardware	generation,	configured	to	use	8GB	of	memory,	4	CPU	
cores,	and	the	default	switch	for	network	access.	If	you	make	use	
of	Hyper-V	Manager	(GUI	application)	you	should	see	the	new	VM	in	
the	list	of	available	VMs,	and	it	should	be	in	the	“running”	state.	

While	this	isn’t	always	required,	for	safety,	this	is	a	pause	point	which	
requires	user	interaction.	Specifically,	you	need	to	log	in	to	your	
shiny	new	VM	and,	if	necessary,	create	a	password	for	it.	Regardless,	
the	VM	should	be	logged	into,	or	(occasionally)	the	remote	PS	
session	will	just...close.	No	explanation,	just	no	connection,	and	
therefore	no	actions	within	the	automation	will	succeed	from	this	
point	forward.

OK,	you’re	logged	in,	you’ve	obtained	the	MSU	you	want,	now	what?	
Well,	this	is	where	things	get	customizable.	There	are	many	features	
you	can	enable,	software	you	can	install,	etc.	It	really	depends	on	
what	you	want	to	do	with	the	VM.	If	you’re	looking	to	root	cause	a	
vulnerability,	odds	are	good	you	want	to	have	some	development	
tools installed (procmon, windbg, vscode, etc.) ,	but	that	all	
requires	a	lot	of	manual	grunt	work,	doesn’t	it?

11Hyper-V Automation for Windows Patch Diffing

WHITE PAPER

Well,	not	really,	no.	There	are	multiple	tools	out	there	which	can	help	
you	with	this	step,	such	as	choco,	scoop,	or	winget.	While	the	script	
presented	here	uses	choco	(mostly	due	to	inertia),	scoop	and	winget	
both	bring	some	interesting	features	to	the	table.	While	choco	requires	
administrator	privileges,	scoop	installs	in	user	mode.	Winget	is	the	new,	
native	Windows	package	manager,	and	can	install	anything	available	in	
the	Microsoft	Store,	as	well	as	many	other	applications.	Any	of	the	three	
could	be	used,	depending	on	whether	they	have	the	tools	you	wanted/
needed	on	the	VM.

And	since	we’re	all	about	doing	this	unattended,	we	can	use	the	Invoke-
Command	commandlet	from	the	Hyper-V	API	to	invoke	the	package	
manager	from the host.

To	use	Invoke-Command ,	you	use	the	session	created	earlier,	and	then	
give	it	a	ScriptBlock .	This	will	be	executed	on	the	VM,	as	administrator,	
within	PowerShell.	This	distinction	is	important,	as	that	allows	us	to	
use	native	PowerShell	in	the	ScriptBlock ,	rather	than	having	to	mix	
and	match	cmd	commands	with	PowerShell.	Also	very	important,	the	
body	of	the	ScriptBlock	runs	on the VM, not the host.	For	the	most	
part,	you	can	consider	it	to	be	very	similar	to	a	fully	isolated	scope:	
variables	don’t	have	their	outside-the-ScriptBlock	values,	and	no	
new	variables	will	survive	after	the	end	of	the	ScriptBlock .	Now,	is	
this	documented	anywhere?	Not	that	I	could	find	--	this	came	out	via	
a	lot	of	experimentation	with	command	line	switches,	setting	values	in	
the	ScriptBlock	that	are	magically	not	there,	etc.	Let	my	pain	save	you	
some	trouble:	assume	nothing	from	the	rest	of	the	script	exists	within	a	
ScriptBlock	and	you	will	find	joy.

In	this	instance,	there’s	a	collection	of	tools	installed	on	the	VM,	mostly	
development	aids	(git,	notepad++,	the	new	Terminal	application,	some	
others).	Many	VScode	extensions	are	also	available	via	choco	-- choco
search vscode will	display	the	available	options.	$choco	is	a	command	

12Hyper-V Automation for Windows Patch Diffing

WHITE PAPER

line	switch	to	the	larger	script	which	defaults	to	$false	to	control	
whether	you	want	tools	installed	or	not.	It	does	take	a	solid	chunk	of	
time	and	can	be	easily	skipped	if	you	prefer	to	do	any	and	all	analysis	
statically	on	your	host.

Some	other	switches	control	other	Windows	optional	features,	
specifically	WSL2	and	Hyper-V.	See	the	full	script	for	details	on	how	
this	is	done.

Finally,	we	have	a	fully	configured	VM,	all	outstanding	reboots	are	dealt	
with	(StopVM	followed	by	a	StartVM),	and	we	are	ready	to	handle	
the	patch	extraction.

In	order	to	get	the	files	onto	the	VM,	we	make	use	of	the	Copy-Item
commandlet,	with	a	-ToSession	parameter	to	signify	directionality	
and	the	relative	meaning	of	-Path	(file	source,	from	host)	and	
-Destination	(new	location,	on	VM).	Now	that	the	files	are	there	
(in	a	location	we	know!),	we	can	now	run	the	PatchExtract	script	
we	talked	about	above.	As	mentioned,	this	will	fully	expand	the	MSU	
update	so	that	we	can	determine	all	the	DLLs	which	are	touched	by	
the	update.

As	mentioned,	I	like	to	pull	the	patch	files	over	to	the	host	machine,	
which	can	be	done	with	a	single	command	on	the	host:

The	reason	for	pulling	the	patch	files	to	the	host	is	so	that	we	can	
quickly	and	easily	generate	a	list	of	touched	DLLs,	then	use	that	list	to	
extract	them	from	the	VM	onto	our	host.

13Hyper-V Automation for Windows Patch Diffing

WHITE PAPER

Now	that	we	have	all	the	pre-patched	DLLs,	we	can	use	Invoke-
Command	once	again	to	install	the	update:

Follow	this	up	with	another	reboot,	and	we	are	ready	to	pull	all	the	post-
patch	DLLs	from	the	VM.	We	do	this	exactly	as	above,	simply	changing	
the	destination	folder	to	be	post_patch .	This	gives	us	the	pre-	and	
post-patch	DLLs.	Are	they	all	the	same?	Let’s	check!	

While	a	given	patch	may	touch	thousands	of	DLLs	in	some	fashion,	a	
much	smaller	subset	of	all	possible	DLLs	is	actually	modified	in	a	way	
that	their	checksum	changes.	In	order	to	construct	this	(typically	much)	
smaller	set	of	files	to	look	at,	we	loop	over	the	DLLs	in	the	post_patch
directory.	If	the	file	isn’t	in	the	pre_patch	directory,	it	must	be	new,	so	
add it to the DLLs_of_interest folder.	Then	we	checksum	both	pre-	
and	post-patch	versions	of	a	given	DLL,	and	if	the	checksum	differs,	
we	move	it	to	our	DLLs_of_interest	folder,	suffixing	the	name	of	
the	DLL	with	its	origin	folder	(<DLL_basename>_pre.dll or	<DLL_
basename>_post.dl l).

Below	you	can	see	the	entire	script,	combining	all	of	the	above	snippets	
into	a	single	script	which	can	be	invoked	from	an	admin	PowerShell	
session	on	the	host.

It	is	quite	possible	this	script	can	be	modified	for	use	with	qemu,	
VirtualBox,	or	VMware	workstation,	but	that’s	left	as	an	exercise	for	the	
reader.

14Hyper-V Automation for Windows Patch Diffing

WHITE PAPER

15Hyper-V Automation for Windows Patch Diffing

WHITE PAPER

16Hyper-V Automation for Windows Patch Diffing

WHITE PAPER

Copyright © 2022 Musarubra US LLC
JANUARY 2022

WHITE PAPER

1.	 https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/hyper-v-
requirements	

2.	 While	you	may	be	aware	that	WSL2	uses	Hyper-V,	it	does	so	in	a	special	fashion.	More	specifically,	
the	Hyper-V	role	is	the	limiting	factor	to	creating	Hyper-V	VMs	on	an	unsupported	OS	variant.

3.	 https://docs.oracle.com/en/virtualization/virtualbox/6.0/admin/hyperv-support.html	

4.	 https://blogs.vmware.com/workstation/2020/05/vmware-workstation-now-supports-hyper-v-mode.
html	

5.	 https://wumb0.in/extracting-and-diffing-ms-patches-in-2020.html	

https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/hyper-v-requirements
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/hyper-v-requirements
https://docs.oracle.com/en/virtualization/virtualbox/6.0/admin/hyperv-support.html
https://blogs.vmware.com/workstation/2020/05/vmware-workstation-now-supports-hyper-v-mode.html
https://blogs.vmware.com/workstation/2020/05/vmware-workstation-now-supports-hyper-v-mode.html
https://wumb0.in/extracting-and-diffing-ms-patches-in-2020.html

